Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3.

نویسندگان

  • Carlo Calfapietra
  • Giuseppe Scarascia Mugnozza
  • David F Karnosky
  • Francesco Loreto
  • Thomas D Sharkey
چکیده

Isoprene is the most important nonmethane hydrocarbon emitted by plants. The role of isoprene in the plant is not entirely understood but there is evidence that it might have a protective role against different oxidative stresses originating from heat shock and/or exposure to ozone (O(3)). Thus, plants under stress conditions might benefit by constitutively high or by higher stress-induced isoprene emission rates. In this study, measurements are presented of isoprene emission from aspen (Populus tremuloides) trees grown in the field for several years under elevated CO(2) and O(3). Two aspen clones were investigated: the O(3)-tolerant 271 and the O(3)-sensitive 42E. Isoprene emission decreased significantly both under elevated CO(2) and under elevated O(3) in the O(3)-sensitive clone, but only slightly in the O(3)-tolerant clone. This study demonstrates that long-term-adapted plants are not able to respond to O(3) stress by increasing their isoprene emission rates. However, O(3)-tolerant clones have the capacity to maintain higher amounts of isoprene emission. It is suggested that tolerance to O(3) is explained by a combination of different factors; while the reduction of O(3) uptake is likely to be the most important, the capacity to maintain higher amounts of isoprene is an important factor in strengthening this character.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoprene synthase expression and protein levels are reduced under elevated O3 but not under elevated CO2 (FACE) in field-grown aspen trees.

Emission of hydrocarbons by trees has a crucial role in the oxidizing potential of the atmosphere. In particular, isoprene oxidation leads to the formation of tropospheric ozone and other secondary pollutants. It is expected that changes in the composition of the atmosphere will influence the emission rate of isoprene, which may in turn feedback on the accumulation of pollutants and greenhouse ...

متن کامل

Stem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after 3 years of treatments to elevated carbon dioxide and ozone

The aim of this study was to examine the effects of elevated carbon dioxide [CO2] and ozone [O3] and their interaction on wood chemistry and anatomy of five clones of 3-yearold trembling aspen (Populus tremuloides Michx.). Wood chemistry was studied also on paper birch (Betula papyrifera Marsh.) and sugar maple (Acer saccharum Marsh.) seedling-origin saplings of the same age. Material for the s...

متن کامل

Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: can CO2 ameliorate the harmful effects of O3?

To determine whether elevated CO2 reduces or exacerbates the detrimental effects of O3 on aspen (Populus tremuloides Michx.). aspen clones 216 and 271 (O3 tolerant), and 259 (O3 sensitive) were exposed to ambient levels of CO2 and O3 or elevated levels of CO2, O3, or CO2 + O3 in the FACTS II (Aspen FACE) experiment, and physiological and molecular responses were measured and compared. Clone 259...

متن کامل

Growth and crown architecture of two aspen genotypes exposed to interacting ozone and carbon dioxide.

To study the impact of ozone (O3) and O3 plus CO2 on aspen growth, we planted two trembling aspen clones, differing in sensitivity to O3 in the ground in open-top chambers and exposed them to different concentrations of O3 and O3 plus CO, for 98 days. Ozone exposure (58 to 97 microl l(-1)-h. total exposure) decreased growth and modified crown architecture of both aspen clones. Ozone exposure de...

متن کامل

Will photosynthetic capacity of aspen trees acclimate after long-term exposure to elevated CO2 and O3?

Photosynthetic acclimation under elevated carbon dioxide (CO(2)) and/or ozone (O(3)) has been the topic of discussion in many papers recently. We examined whether or not aspen plants grown under elevated CO(2) and/or O(3) will acclimate after 11 years of exposure at the Aspen Face site in Rhinelander, WI, USA. We studied diurnal patterns of instantaneous photosynthetic measurements as well as A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The New phytologist

دوره 179 1  شماره 

صفحات  -

تاریخ انتشار 2008